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ABSTRACT
This work studies time-slotted communication over molecu-
lar timing (MT) channels. The transmitter, assumed to be
perfectly synchronized in time with the receiver, releases a
single information particle in each time slot, where the in-
formation is encoded in the time of release. The receiver
decodes the transmitted information based on the random
time of arrivals of the information particles during a finite-
time reception window. The maximum-likelihood (ML) de-
tector is derived and shown to have an exponential compu-
tational complexity, thus, rendering it impractical. In ad-
dition, two practical detectors are presented: The first is a
symbol-by-symbol detector. The second is a sequence de-
tector which is based on the Viterbi algorithm (VA), yet,
the VA is used differently than in its common application in
ML detection where information is transmitted over linear
channels with memory. Numerical simulations indicate that
the proposed sequence detection algorithm significantly im-
proves the performance compared to the symbol-by-symbol
detector. Furthermore, for a short number of transmitted
symbols it closely approaches the highly complicated ML
detector.

1. INTRODUCTION
Molecular communication (MC) is a new communication

paradigm in which nano-scale devices communicate with
each other by exchanging small information particles [1].
Several methods are used in MC systems to encode the
transmitted information: in the type of the released par-
ticles, in their concentration, in their number, or in their
time of release [2, 3]. There are also several mechanisms
for transporting the information particles from the trans-
mitter to the receiver: diffusion, active transport, bacteria,
and flow. In this work, we study receiver design for MC
systems in which the information is encoded in the time of
release of the information particles, see, for example, [4, 5].
This model is also referred to as the molecular timing (MT)
channel. We use the common assumption, which is accu-
rate for many sensors, that each particle which arrives at
the receiver during its observation window is absorbed and
removed from the environment. Thus, the random delay
until a particle arrives at the receiver can be represented as
an additive noise term. Moreover, particles which do not
arrive within the receiver’s observation window are assumed
to be destroyed. For an unbounded observation window,

and when the transportation mechanism is diffusion with-
out flow, this additive noise follows the Lévy distribution
[6], whereas with flow the noise follows an inverse Gaussian
(IG) distribution [7].1

Traditional electromagnetic (EM) communication and MC
share several similarities which motivates using tools and al-
gorithms common in EM communication systems in design-
ing MC receivers. On-off transmission based on diffusion of
information particles was studied in [8, 9]. In this setup the
receiver recovers the transmitted information from the mea-
sured concentration of information particles. The work [8]
modeled this channel as a linear channel with finite mem-
ory and additive Gaussian noise, and derived the optimal,
i.e., maximum likelihood (ML), sequence detector using the
Viterbi Algorithm (VA) [10]. A similar setup was studied in
[11], which derived a technique for inter-symbol interference
(ISI) mitigation along with a reduced-state ML sequence de-
tection algorithm. On-off transmission over a diffusive MC
channel with flow was studied in [12], which proposed an
ML sequence detection algorithm, and designed a family of
weighted sums detectors.

The above works use a linear channel model with additive
(and in some cases Gaussian) noise. Yet, MT channels are
not linear and the additive noise is not Gaussian. Moreover,
in MT channels the symbol duration is a random variable
(RV), and therefore, information particles may arrive out-
of-order. Decoding particles in the correct order is thus a
big challenge for the detector, in particular when the trans-
mitted information particles are indistinguishable [13].

Main Contributions: Previous studies on MT channels
either considered a memoryless channel, see [3] and refer-
ences therein, or focused on the information theoretic as-
pects of the problem [2, 13]. In this work, we study a more
practical setting of time-slotted communication in which the
receiver has a bounded observation window. This implies
that not only do the transmitted particles arrive out-of-order
but, in addition, some of them do not arrive at the receiver
within its observation time. We derive the ML detector for
this problem and show that it has an exponential complexity.
As the channel is not linear, and due to the lack of ordering,
this ML detector cannot be efficiently implemented using an
algorithm with polynomial complexity. Therefore, we first
derive a simple symbol-by-symbol detector, which extends
the detector presented in [14]. We next develop a sequence
detection algorithm that is based on the VA. However, in
contrast with the traditional VA algorithm in EM commu-
nication, our detector uses the VA in the context of hidden

1
Note that in [7] a single-dimension environment is studied.



Markov models. Via numerical simulations we show that
the proposed sequence detection algorithm significantly im-
proves the performance compared to the symbol-by-symbol
detector, and for a short number of transmitted symbols it
closely approaches the highly complicated ML detector.

The rest of this paper is organized as follows. The problem
formulation and some preliminaries are presented in Section
2. Optimal detection in the presence of ISI is studied in
Section 3. The symbol-by-symbol detector is presented in
Section 4, while the sequence detector is derived in Section 5.
Numerical results are presented in Section 6 and concluding
remarks are provided in Section 7.

Notation: We denote the set of real numbers with R,
the set of positive real numbers with R+, and the set of in-
tegers with N . Other than these sets, we denote sets with
calligraphic letters, e.g., V. We denote RVs with upper case
letters, e.g., X, and their realizations with lower case let-
ters, e.g., x. We use fY (y) to denote the probability density
function (PDF) of a continuous RV Y on R, fY |X(y|x) to
denote the conditional PDF of Y given X, and FY |X(y|x)
to denote the conditional cumulative distribution function
(CDF). Finally, we use erfc (·) to denote the complementary

error function given by erfc(x) = 2√
π

∫∞
x
e−u

2

du, and log(·)
to denote the natural logarithm.

2. PRELIMINARIES
2.1 System Model

We assume that the information particles themselves are
identical and indistinguishable at the receiver. Therefore,
the receiver can only use the time of arrival to decode the
intended message. The information particles propagate from
the transmitter to the receiver through some random prop-
agation mechanism (e.g. diffusion). We make the following
assumptions about the system:

A1) The transmitter perfectly controls the release time of
each information particle, and the receiver perfectly
measures the arrival times of the information parti-
cles. Furthermore, the transmitter and the receiver
are perfectly synchronized in time.

A2) An information particle which arrives at the receiver is
absorbed and removed from the propagation medium.

A3) All information particles propagate independently of
each other, and their trajectories are random according
to an i.i.d. random process.2

We note that these assumptions are consistent with those
made in all previous works, in order to make the models
tractable (see [3] and references therein).

Let X be a finite set of constellation points on the real line:
X , {ξ0, ξ1, . . . , ξL−1}, 0 ≤ ξ0 ≤ · · · ≤ ξL−1 ≤ Ts, where
Ts <∞ denotes the symbol duration. The kth transmission
takes place at time (k− 1)Ts +Xk, Xk ∈ X , k = 1, 2, . . . ,K.
At this time, a single information particle is released into the
medium by the transmitter. The transmitted information
is encoded in the sequence {(k − 1)Ts + Xk}Kk=1, which is
assumed to be independent of the random propagation time
of each of the information particles. Let Yk denote the time
of arrival of the information particle released at time (k −
2
This is a reasonable assumption for many different propagation

schemes in molecular communication such as diffusion in dilute so-
lutions, i.e., when the number of particles released is much smaller
than the number of molecules of the solutions.

1)Ts + Xk. It follows that Yk > Xk. Thus, we obtain the
following additive noise channel model:

Yk = (k − 1)Ts +Xk + Zk, k = 1, 2, . . . ,K, (1)

where Zk, is a random noise term representing the propaga-
tion time of the particle transmitted at the kth time slot.3

In the rest of this work we restrict our attention to the case
of binary modulations and set X ={0,∆}. Let {Sk}Kk=1, Sk∈
{0, 1}, denote a sequence of independent and equiprobable
bits to be sent over the channel to the receiver, where the
kth bit is sent in the kth slot. Without loss of generality
assume that the bit b ∈ {0, 1} is mapped to the symbol ξb.

Let Ŝk denote the estimate of Sk at the receiver, and define
Pε,k , Pr{ Ŝk 6= Sk}. Our objective is to design receivers
that minimize the following average probability of error:

Pε =
1

K

K∑
k=1

Pε,k. (2)

Remark 1. In contrast to EM communication in which
Pε,k is roughly the same for all k,4 in our setup the proba-
bility of error of each symbol is different. More precisely, for
values of Ts which are close to ∆, each symbol experiences
ISI from all previous transmitted symbols, implying that the
probability of error is different for every k. For instance,
for K = 2, in the first slot only the first particle may arrive,
while in the second slot both the first and the second particles
may arrive. On the other hand, when Ts � ∆ then there is
almost no ISI, and all symbols have roughly the same Pε,k.

We emphasize that the above description of communica-
tion over MT channels is fairly general and can be applied
to different propagation mechanisms as long as Assumptions
A1)–A3) are not violated. In the rest of the paper we fo-
cus on diffusion-based propagation without flow which is gov-
erned by the Lévy distribution.

2.2 The Diffusion-Based MT Channel
In diffusion-based propagation, the released particles fol-

low a random Brownian path from the transmitter to the
receiver. In this case, to specify the random additive noise
term Zk in (1), we define a Lévy-distributed RV as follows:

Definition 1. Let Z be Lévy-distributed with location pa-
rameter µ and scale parameter c [15]. Then, its PDF is given
by:

fZ(z) =

{√
c

2π(z−µ)3 exp
(
− c

2(z−µ)

)
, z > µ

0, z ≤ µ
, (3)

and its CDF is given by:

FZ(z) =

erfc

(√
c

2(z−µ)

)
, z > µ

0, z ≤ µ
. (4)

Let d denote the distance between the transmitter and
the receiver, and D denote the diffusion coefficient of the
information particles in the propagation medium. Following
along the lines of the derivations in [7, Sec. II], and using
the results of [16, Sec. 2.6.A], it can be shown that for
the 1-dimensional pure diffusion, the propagation time of
each of the information particles follows a Lévy distribution,

denoted in this work by ∼ L (µ, c) with c = d2

2D
and µ = 0.

Thus, Zk ∼ L (0, c), k = 1, 2, . . . ,K.

3
Note that Assumption A3) implies that all the RVs Zk are indepen-

dent.
4
Here we neglect initialization and termination effects of communi-

cation in the presence of ISI.



Remark 2. The work [17] showed that a scaled Lévy dis-
tribution can also model the first arrival time in the case of
an infinite, three-dimensional homogeneous medium without
flow. Hence, our results can be extended to 3-D space by
simply introducing a scalar factor.

2.3 Optimal Detection When Ts � ∆
Before studying detection for arbitrary values of Ts, we

first briefly discuss the case of Ts � ∆, namely, the channel
is (approximately) memoryless and optimal detection can be
applied for each symbol separately. Clearly, the performance
in this case can serve as a lower bound on the performance
in the case of arbitrary Ts. The optimal decision rule, as-
suming a memoryless channel, was presented in [14, Prop.
1], repeated here for ease of reference:

Proposition 1. Let y = yk − (k − 1)Ts. The decision
rule which minimizes the probability of error for Ts � ∆, is
given by:

X̂No-ISI(y) =

{
0, y < θ

∆, y ≥ θ,
(5)

where θ is the unique solution, in the interval [∆,∆ + c
3
], of

the following equation in y:

y(y −∆) log

(
y1

y1 −∆

)
=
c∆

3
, y > ∆ > 0. (6)

Furthermore, the probability of error of this decision rule is
given by:

Pε = 0.5

(
1− erfc

(√
c

2θ

)
+ erfc

(√
c

2(θ −∆)

))
. (7)

Next, we study detection for arbitrary values of Ts > ∆,
namely, when the channel has memory.

3. ML DETECTION FOR ARBITRARY TS

We begin this section with the observation that ISI in
MT channels is fundamentally different from ISI in tradi-
tional EM communication [2, 13]. More specifically, in EM
communication the channel is commonly assumed to be lin-
ear: υk = h0ζk +

∑L
j=1 hjζk−j + wk, where {ζk} are the

channel inputs, {hj}Lj=0 are the (usually known) channel re-
sponse coefficients, wk is an additive noise independent of
the channel coefficients and of the transmitted signal, and
υk is the channel output. Thus, a symbol transmitted at
time index k systematically affects the current and future L
output symbols via the channel response {hj}Lj=0.

On the other hand, in MT channels the ISI is random,
namely, there is a non-negligible probability that a particle
that was transmitted at time slot n < k will arrive at time
slot k. Furthermore, in MT channels an information particle
arrives only once at the receiver, this is in contrast to EM
communications in which ζk is assumed to be observed at
the receiver both at time instance k and k + l, l < L. Fi-
nally, in MT channels, due to the random delay, the channel
outputs are not ordered, and some time slots may even have
no arrivals.

Remark 3. Part of the above observations were stated in
[18, Remark 1]. Yet, in [18] the authors considered on-off
concentration modulation and tackled the above challenge by
analyzing the expected channel output. In diffusion-based
MT channels the mean and variance of the channel output
are not defined (since the Lévy noise has no mean and vari-
ance). Thus, this approach is not applicable.

Let {t1 ≤ t2 ≤ · · · ≤ tn}, 1 ≤ n ≤ K be the sequence of
arrival times at the receiver in the considered K time slots.
Thus, tn ≤ KTs. Note that tj ∈ {y1, y2, . . . , yK}, yet, due to
the fact that the particles are indistinguishable, the receiver
does not know the mapping {tj}nj=1 7→ {yk}Kk=1. Further
note that it is not guaranteed that all particles transmitted
in these time slots indeed arrive, thus n ≤ K.

Let perm(M) denote the permanent of a square matrix M,
see [19], and let x denote a short-hand notation for {xk}Kk=1.

Further define fk(y,x) , fY |X(y|xk), where fY |X(y|xk) =
fZ(y|µ = xk). We define Fk(y,x) in a similar manner. The
detector that minimizes the probability of error is stated in
the following theorem:

Theorem 1. The following detector minimizes the prob-
ability of error in detecting X based on {t1, t2, . . . tn}:

X̂ML = argmax
x

perm(M(x)), (8)

where M(x) is a K ×K matrix given by:

M(x) =



f1(t1,x) · · · fK(t1,x)
f1(t2,x) · · · fK(t2,x)

...
...

f1(tn,x) · · · fK(tn,x)
1− F1(tn,x) · · · 1− FK(tn,x)

...
...

1− F1(tn,x) · · · 1− FK(tn,x)


,

with the last K − n rows of M(x) identical and equal to:[
1− F1(tn,x) · · · 1− FK(tn,x)

]
.

Remark 4. While the works [2, 13] also considered opti-
mal detection when order is not preserved, they assumed that
all the particles arrive and expressed the joint density of the
sequence {tj}Kj=1 in terms of a folded density of {yk}Kk=1, see
[13, Eq. (4)].

Proof of Theorem 1. As all the symbols are equiprob-
able, the detector that minimizes the probability of error is
the ML detector, given by:

X̂ML = argmax
x

f{Tj}nj=1|{Xk}Kk=1
({tj}nj=1|{xk}Kk=1).

Note that {tj}nj=1 are the first n arrivals, or equivalently, the

smallest n values in the sequence {yk}Kk=1. Further note that
given {xk}Kk=1, the RVs {Yk}Kk=1 are independent but non-
identically distributed, since each Yk has a different offset
parameter. Note that given xk, the PDF of Yk is fk(y, xk),
and its CDF is Fk(y, xk). Thus, using results from order-
statistics theory [20, pg. 309],5 we have:

f{Tj}nj=1|{Xk}Kk=1
({tj}nj=1|{xk}Kk=1)=

1

(K−n)!
perm(M(x)).

This concludes the proof.

Remark 5. In traditional EM communication the ML de-
tector can be implemented using the VA which requires a
polynomial computational complexity in K. On the other
hand, the computational complexity of the ML detector in
(8), which uses an exhaustive search, is O(22KK2). This fol-
lows as the best known algorithm for calculating the perma-
nent is by Ryser from 1963, with the complexity of O(2KK2),

5
Note that we are interested in the density of the smallest n RVs out

of k independent RVs.



see [21, Ch. 1.3], while this permanent should be evaluated
for each possible sequence {xk}Kk=1. Since only calculating
the permanent requires exponential complexity, we conjec-
ture that the ML detector in (8) cannot be implemented ef-
ficiently, i.e., in polynomial time.

As the ML detector cannot be implemented even for mod-
erate values of K, we next consider sub-optimal detectors.
In the next section we consider a simple symbol-by-symbol
detector which is asymptotically optimal, i.e., for Ts � ∆.

4. SYMBOL-BY-SYMBOL DETECTION
We first note that the detector in (5) should be adapted to

the setting in which ISI is present, since there might be more
than a single arrival within the slot boundaries. This is again
fundamentally different than in EM communication where
the optimal symbol-by-symbol detector can simply be used
in the presence of ISI, at the cost of higher probability of
error. We propose the following adaptation to the detector
in (5):

A Symbol-by-symbol decision rule: Let αk denote the num-
ber of arrivals in the time interval [(k − 1)Ts, (k − 1)Ts +
θ), k = 1, 2, . . . ,K, and βk denote the number of arrivals in
the interval [(k − 1)Ts + θ, kTs). The detector applies the
following decision rule:6

Ŝk(αk, βk) =


0, αk > 0 and βk = 0

1, αk = 0

qk, αk > 0 and βk > 0,

(9)

where qk ∈ {0, 1} is a Bernoulli RV with Pr{qk = 0} = 0.5,
i.i.d. over time.

The first two events on the right hand side (RHS) of (9)
are an extension of (5) to the case of multiple arrivals at
the same time slot. On the other hand, for the third event
we note that, as we cannot distinguish between different in-
formation particles, it is not clear which decision should be
taken. Therefore, we simply toss a coin via the RV qk. Nu-
merical simulations indicate that other policies yield roughly
the same probability of error.7

In [22, Theorem 2] we derive the exact probability of error
of this adapted detector. We omit this expression here due
to space limitations. In [22, Corollary 1] we also show that
for Ts � ∆ the performance of the adapted detector ap-
proaches (7). An intuitive explanation for this result is the
observation that when Ts � ∆, then the probability that a
particle will not arrive in its time slot is negligible, and (9)
specializes to (5).

Next, we present our proposed sequence detection algo-
rithm.

5. SEQUENCE DETECTION ALGORITHM
We begin this section with the observation that for small

values of Ts, or for heavy-tailed noise distributions like the
Lévy distribution, the channel (1) is reminiscent of an infi-
nite impulse response (IIR) channel in EM communication,
in the sense that the current channel input depends on all
previous transmitted symbols. Yet, in contrast to the com-
monly linear model, the channel (1) is not linear. Moreover,
in some of the slots there are no arrivals, while the total

6
Note that this detector is not necessarily the optimal symbol-by-

symbol detector in the presence of ISI, yet, asymptotically, i.e., for
Ts �∞, it achieves the performance of the detector in (5).
7
For instance, majority rule together with tossing a coin when αk =
βk.

number of arrivals in the receiver observation window can
be smaller than the number of transmissions. Therefore, ap-
plying traditional sequence detection algorithms is far from
straight-forward. To tackle the challenge of the lack of mea-
surements in arbitrary slots, we use a simplified discrete (in
amplitude) channel model which counts the number of ar-
rivals at each slot. Thus, we obtain valid measurements even
for slots with no arrivals. Then, we apply sequence detection
based on the simplified model using a modified VA. Clearly,
as we use a simplified channel model, the resulting detec-
tor is sub-optimal. Yet, simulation results show that it can
achieve performance close to the ML detector.

In its most general form, the VA solves a MAP estimation
problem of the state sequence of a finite-state discrete-time
Markov process observed in memoryless noise [10]. However,
the channel in our problem may have infinite memory which
implies an infinite state space. This is tackled by truncat-
ing the channel response. More precisely, by noting that
the density of the noise decays with time, it follows that for
transmission time and observation time far enough apart,
one can approximate this density by zero, thus, truncating
the channel and resulting in a channel with finite memory.
Yet, it should be noted that in contrast to EM communica-
tion, in our setting such truncation requires separate treat-
ment for cases in which the observed channel output is not
a valid output of the assumed model. We denote this event
as an out of model event.

5.1 From Arrival Times to Arrival Counts
To overcome the lack of measurements in arbitrary slots,

and to partially cope with the lack of ordering, we calculate
the sequence {Vk}Kk=1, Vk=(αk, βk), as defined in Section 4,
from the sequence {tj}nj=1, and use {Vk}Kk=1 as input to our
algorithm. Note that with this transformation we have a
valid measurement for every time slot. It should be noted
that the proposed detection algorithm can be used with any
partition of the slot. We choose the above partition since it
minimizes the probability of error in a single symbol trans-
mission and it achieves the optimal detection performance
for Ts�∆.

5.2 Truncating the Channel
To obtain a finite state model we truncate the channel,

namely, we assume that in the kth time slot one can observe
arrivals of information particles transmitted in time slots
{k− l}Ll=0, thus, obtaining a channel of memory L. Clearly,
larger L captures the channel statistics more accurately at
the cost of exponentially increased computational complex-
ity. We propose to choose L as a given fraction of the worst
case probability of arrival of past information particles. Let
pISIk denote the probability that any past transmitted infor-
mation particle arrives at time slot k. We have the following
proposition:

Proposition 2. The probability of arrival of past infor-
mation particles at time slot k increases with k and is given
by pISIk =

∑k−1
i=1 p

ISI
k,i , where pISIk,i is defined in (10) at the top

of the next page.

Proof. The proof is provided in [22].

The above proposition implies that the last slot experiences
the largest ISI. Thus, L can be chosen to cover a given frac-
tion of pISIK .



pISIk,i=0.5

{
erfc

(√
c

2(k−i+1)Ts

)
−erfc

(√
c

2(k−i)Ts

)
+erfc

(√
c

2((k−i+1)Ts−∆)

)
−erfc

(√
c

2((k−i)Ts−∆)

)}
. (10)

5.3 The Markov Structure
For a given L, we assume a finite-memory channel, i.e.,

Vk = (αk, βk) depends on the transmissions at time slots
k − L, k − L+ 1, . . . , k. Thus, we write:

Pr{{Vk}Kk=1|{Xk}Kk=1}=

L∏
j=1

Pr{Vj |{Xi}ji=1, {Vi}
j−1
i=1 }

×
K∏

k=L+1

Pr{Vk|{Xi}ki=k−L,{Vi}k−1
i=1}. (11)

Note that in (11), Vk depends on all the previous V ’s, thus
it does not represent a process with finite memory. This
follows from the fact that each particle can arrive at the
receiver only once. Motivated by the case of Ts � ∆, or
by the large ∆ regime,8 in which the dependence between
Vk and {Vj}k−1

j=1 is very weak, we apply the approximation

Pr{Vk|{Xi}kk−L, {Vi}k−1
i=1 } ≈ Pr{Vk|{Xi}kk−L}, which results

in a finite memory. In Section 6 we show that even with
this approximation, in some settings the performance of the
proposed sequence detector approaches the performance of
the ML detector. With this approximation in hand, we now
propose the following sequence detector:

X̂SD = argmax
{xk}Kk=1

L∑
j=1

log
(

Pr{Vj |{xi}ji=1}
)

+

K∑
k=L+1

log
(

Pr{Vk|{xi}ki=k−L}
)
. (12)

The first summation on the RHS of (12) constitute L steps of
initializations, while the second summation can be efficiently
calculated using the VA. Next, we briefly elaborate on the
initialization of the VA, the calculation of the steady-state
branch metric, and the traceback.

5.4 Branch Metric, Initialization, and Trace-
back

Branch Metric: Equation (12) implies that the trellis
consists of 2L states, characterized by {xi}k−1

i=k−L, and the

transition metric is given by log
(
Pr{Vk = v|{xi}ki=k−L}

)
.

Note that since we only assume a truncated channel model,
v in this metric may not belong to the set of possible output
pairs defined by the assumed model. More precisely, the as-
sumption of finite memory of order L implies that Vk ≤ L+
1, k > L. On the other hand, the measured Vk is generated
by the original channel, and therefore Vk ≤ k+ 1. To tackle
this mismatch we first define the set Vtm which contains
all the possible V ’s in our truncated channel model Vtm ,
{(α, β) : α+ β ≤ L+ 1, α ∈ N, β ∈ N}. Next, we define the
set Vres = {(α, β) : L+ 1 < α+ β ≤ k + 1, α ∈ N, β ∈ N},
namely, Vres is the set of all V ’s which cannot be generated
by our model. The branch metric is now given by:

TM(v, {xi}ki=k−L)

=


log
(
Pr{v|{xi}ki=k−L}

)
, v∈Vtm,

log

1−
∑

(ṽ∈Vtm)

Pr{ṽ|{xi}ki=k−L}

, v∈Vres.
(13)

8
These are reminiscent of the high SNR regime in EM communication.

Remark 6. The terms log
(
Pr{v|{xi}ki=k−L}

)
are calcu-

lated based on the finite memory model, namely, without ac-
counting for the tails of the noise density. Therefore, as the
support of the Lévy distribution is R+, the probability of the
out of model event, given by 1−

∑
(ṽ∈Vtm)Pr{ṽ|{xi}ki=k−L},

is larger than zero.

Initialization and traceback: In the initialization phase
we use the metric log

(
Pr{Vj = v|{xi}ji=1}

)
. Here, as j < L,

the out of model event is not required. Finally, as there
is no termination transmission, we trace back starting from
the state with the maximal accumulated metric.

Remark 7. In [22, Section 12] we consider the case of
L = 1, detail the sets Vtm and Vres, and describe how the
respective transition probabilities are calculated.

6. NUMERICAL RESULTS
Next, we demonstrate our results via numerical simula-

tions. To simplify the presentation we assume that the slot
length scales proportionally to ∆, and present the average
probability of error as a function of ∆ for a given value of c.
The parameter c is known to be the dispersion of the noise
[14], which is reminiscent of the standard deviation in the
case of the Gaussian distribution. This implies that larger
values of c correspond to more ISI.

In Fig. 1 we present Pε versus ∆ for c = 2 and Ts =
1.5∆. Here, as the ML detector has exponential complexity,
we consider a short block of length K = 6. The sequence
detector is implemented with L = 2, while for each ∆ point
104 trials were carried out. It can be observed that the
sequence detector proposed in Section 5 achieves almost the
same probability of error as the ML detector, yet, it entails
only a polynomial complexity. It can further be observed, as
expected, that both detectors are significantly outperformed
by the no-ISI detector; this is due to the severe ISI which
results in non-ordered arrivals, or even arrival of only part
of the information particles. Fig. 1 also indicates the large
gains of the sequence detector over the symbol-by-symbol
detector. For example, to achieve Pε = 0.1 the sequence
detector requires ∆ = 49[s], which reflects a gain of 25%
compared to the symbol-by-symbol detector.

Fig. 2 depicts Pε versus ∆ for c = 0.1 and Ts = 15∆. Here
K = 100, and the ML detector is not presented due to its
exponential computational complexity. It can be observed
that the performance of the sequence detector is very close
to the optimal detector when no ISI is present. This is due
to the relatively large spacing between transmissions. On
the other hand, for Ts = 15∆, one can again observe a
significant gain of the sequence detector compared to the
symbol-by-symbol detector.

7. CONCLUSIONS
In this work we have studied time-slotted communication

over diffusion-based MT channels, where we focused on a
practical setting in which the receiver has a bounded obser-
vation window. Thus, not only do the transmitted particles
arrive out-of-order but, in addition, some of them do not ar-
rive at the receiver within the observation time. We derived
three detectors for this communication system. The first is
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Figure 1: Pε vs. ∆ for c = 2 and Ts = 1.5∆. The
sequence detection is implemented assuming L = 2.
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Figure 2: Pε vs. ∆ for c = 0.1 and Ts = 15∆. The
sequence detection is implemented assuming L = 2.

the ML detector which achieves optimal performance at the
cost of exponential complexity. The second is a symbol-by-
symbol detector. The third is a sequence detector which
is based on the VA. However, the VA is used differently
than in its common application of ML detection where in-
formation is transmitted over linear channels with ISI. Nu-
merical simulations indicate that the proposed sequence de-
tector, which has polynomial complexity, significantly im-
proves the performance compared to the symbol-by-symbol
detector. Moreover, for a short number of transmitted sym-
bols its performance is very close to the performance of the
exponentially-complex ML detector.
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